

Structure Functions at low Q2

- → experiment e99-118
 - → experiment e00-002
 - → experiment e94-110
 - → two photon effects

<u>1. e99-118</u>

Inclusive $e + p \rightarrow e + X$ Scattering

Rosenbluth:

$$\frac{d\sigma}{d\Omega dE^{'}} = \Gamma(\sigma_T + \varepsilon \sigma_L)$$
 Born Approximation

Where: Γ = flux of transversely polarized virtual photons

 ε = relative longitudinal polarization

Alternatively:

$$\frac{d\sigma}{d\Omega dE'} = \sigma_{mott} \left(F_2 / \nu + 2F_1 \tan^2(\theta/2) / M \right)$$

$$R = \frac{\sigma_L}{\sigma_T} = \frac{F_L}{2xF_1} \quad F_L = \left(1 + \frac{4M^2x^2}{Q^2} \right) F_2 - 2xF_1$$

longitudinal Mixture

January 05, 2006 January 2006, Hall C. Jlab

Physics at low Q² (Overview)

$$W^{\mu\nu} = \frac{F_1(x, Q^2)}{M} \left(-g_{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{F_2(x, Q^2)}{M(p \cdot q)} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right)$$

$$W^{\mu\nu} = -\frac{F_{1}(x,Q^{2})}{M}g^{\mu\nu} + \frac{F_{2}(x,Q^{2})}{M(p \cdot q)}p^{\mu}p^{\nu}$$

$$+ \left(\frac{F_{1}(x,Q^{2})}{M} + \frac{F_{2}(x,Q^{2})}{M}\frac{p \cdot q}{q^{2}}\right)\frac{q^{\mu}q^{\nu}}{q^{2}}$$

$$-\frac{F_{2}}{M}\frac{p^{\mu}q^{\nu} + p^{\nu}q^{\mu}}{q^{2}}$$

$$\frac{F_{1}}{M} + \frac{F_{2}}{M}\frac{p \cdot q}{q^{2}} = O(Q^{2})$$

$$R(x,Q^{2}) = \frac{\sigma_{L}}{\sigma_{T}} = \frac{(1 + 4M^{2}x^{2}/Q^{2})F_{2}}{2xF_{1}} - 1$$

Physics at low Q² (Overview)

$$\odot$$
 R(x,Q²) = $\sigma_L/\sigma_T \rightarrow Q^2$ as $Q^2 \rightarrow 0$

$$\odot$$
 $\sigma^{yp} = \sigma_T + \epsilon \sigma_L \rightarrow \sigma_T \text{ as } Q^2 \rightarrow 0$

January 05, 2006

Twist Effects

$$F_2(x,Q^2) = \sum_{n=0}^{\infty} \frac{C_n(x,Q^2)}{\left(Q^2\right)^n} = C_0(x,Q^2) + \frac{C_1(x,Q^2)}{Q^2} + \frac{C_2(x,Q^2)}{Q^4} + \dots$$

at $Q^2 \rightarrow 0$: $F_2 = O(Q^2)$

$$\frac{F_1}{M} + \frac{F_2}{M} \quad \frac{p \cdot q}{q^2} = O(Q^2)$$

 F_2 is usually parametrized as:

$$F(x,Q^{2}) = F^{LT}(x,Q^{2}) \left(1 + \frac{C(x)}{Q^{2}} + ...\right)$$

C(x) characterizes the strength of the twist-four term

Nuclear Effects in F2 and R

$$\frac{\sigma_{A}}{\sigma_{D}} = \frac{F_{2}^{A}(1 + \epsilon R_{A})(1 + R_{D})}{F_{2}^{D}(1 + R_{A})(1 + \epsilon R_{D})}$$

$$\frac{\sigma_{A}}{\sigma_{D}} = \frac{F_{2}^{A}}{F_{2}^{D}}$$

$$\epsilon = 1$$
 or $R^A = R^D$

$$R = \frac{\sigma_{_{
m L}}}{\sigma_{_{
m T}}}$$

ε ≈ 1 (for high Energy) virtual photon polarization parameter

A - dependence of R at low Q2?

1st Method

Rosenbluth Separation

Requirements:

The same x, Q^2 but different ε .

$$\frac{\mathbf{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E'} = \Gamma(\sigma_{\mathsf{T}} + \varepsilon \sigma_{\mathsf{L}})$$

2nd Method

Model Dependent Method

Requirements: Good model for $\mathbf{F_2}(\mathbf{x}, \mathbf{Q}^2)$

Using σ_{exp} and $F_2(x,Q^2)$ model, R can be calculated.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E'\mathrm{d}\Omega} = \sigma_{\mathrm{Mott}} \frac{2m_{p}xF_{2}}{Q^{2}\varepsilon} \left(\frac{1+\varepsilon\mathrm{R}}{1+\mathrm{R}}\right)$$

Experimental Status of Unpolarized SFs

- → F₂ well measured responsible for much understanding of proton structure
- \rightarrow Nonetheless, large x, low Q² region is sparse
- \rightarrow R (F_L), is not at all so well measured (especially large x, low Q^2)
- → Situation is worse for nuclei
- \rightarrow If R nonzero, NEED longitudinal / transverse (L/T) separations to extract F_2

F₂ Sensitivity on R

At $W^2 = 4 \text{ GeV}^2$ and $Q^2 < 1 \text{ GeV}^2$, F_2 will vary by 15% depending on the choice of R = 0 or R = 0.2. At higher Q^2 , this can be as much as 20%.

Kinematical Coverage of e99-118

e- A

Nº	Beam Energy	Min E'	Max E'	Min 0°	Max 0°
1	5.648	0.418	5.132	10.60	22.60
2	3.419	0.440	3.220	10.60	52.00
3	2.301	0.440	1.950	10.60	69.00

Targets: H, D, Al, C, Cu, Au

Results from e99-118

$$R = \sigma_L / \sigma_T$$

Results from e99-118 Ratio of R^D/R^H

Results from e99-118 Ratio of $F_2^H \& F_2^D$

Results from e99-118 Ratio of $\sigma^D/\sigma^H~(F_2{}^D/F_2{}^H)$

Results from e99-118 $R = \sigma_{\rm I}/\sigma_{\rm T}$

2. e00-002

Kinematics for cross section and L/T separation

Status of e00-002

- ▶ Calibrations (Yes)
- ► Efficiencies (Yes)
- ▶ Background Events (No/Yes)
- ➤ Cross Sections (No/Yes)
- > Rad. Corrections (No/Yes)

3. Two Photon-Effects
(experiment e94-110)

Results from e94-110

System Rtie bly cortainty

Results from e94-110 $(F_1 \& F_L)$

Two Methods of Form Factors Measurements and Two Different Results

The Rosenbluth Separation Method may be used to extract the form factors $G_{\rm E}$ and $G_{\rm M}$, and hence ratio $(G_{\rm E}/G_{\rm M})^2$ from the ε dependence of a reduced elastic cross section at fixed ${\rm Q}^2$

$$\sigma_r \equiv \frac{d\sigma}{d\Omega} \frac{\varepsilon(1+\tau)}{\sigma_{Mo\tau\tau}} = \varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2) \qquad \tau = \frac{Q^2}{4M^2}$$

$${}_{\mathcal{C}}G_{M}^{2}$$
 - intercept G_{E}^{2} - slope

With Increasing \mathbb{Q}^2 , the cross section is dominated by G_{M_i} while the relative contribution of the G_{E} term is diminished

Polarization Transfer Method

$$\frac{G_E}{G_M} = \frac{P_t}{P_l} \frac{\left(E + E'\right) \tan \left(\frac{\theta_e}{2}\right)}{2M}$$

 \mathbf{P}_{t} – transverse component of the final proton polarization

 P_1 – longitudinal component of the final proton polarization

θ_e – angle between the initial and final directions of the lepton.

Two Methods of Form Factors Measurements and Two Different Results

Large Discrepancy currently exist between the <u>ratio of electric to magnetic proton</u> form factors extracted from previous cross section measurements ($R \approx 1$), and that recently measured via polarization transfer in Hall A Jlab, ($R \approx 1-0.13$).

- 1. R. C. Walker et al., Phys. Rev. D49, 5671 (1994).
- 2. M. Jones et al., Phys. Rev. Lett. 84, 1398 (2000).
- 3. O. Gayou et al., Phys. Rev. Lett. 88, 092301 (2002); O. Gayou et al., Phys. Rev. C64, 038202 (2001).
- 4. M. E. Christy et al., Phys. Rev. C70, 015206 (2004)

* Possible contribution from 2-photons exchange which are not fully accounted for in the standard radiative corrections procedure of Mo-Tsai could explain the discrepancy.

Experiments Included in the Analysis

Elastic Data	Q² (Gev/c)²	№ of L-Ts	δσ/ σ	Lab
Janssents et al.	0.2-0.9	20	4.7 %	Mark III
Litt et al.	2.5-3.8	4	1.7 %	SLAC
Berger et al.	0.4-1.8	8	2.6 %	Bonn
Walker et al.	1.0-3.0	4	1.1 %	SLAC
Andivahis et al.	1.8-5.0	5	1.3 %	SLAC
Chrusty et al.	0.9-5.2	7	1.3 %	Jlab
Qattan et al.	2.6-4.1	3	0.6 %	Jlab

Inelastic Data	W² Gev²	№ of L-Ts	δσ/ σ	Lab
Liang et al.	1.3-1.9	191	1.7 %	Jlab
Dasu et al.	3.2-30	61	3.0 %	SLAC

Example Rosenbluth Separations

Experiment e94-110, 191 LT Separations

Experiment e140, 61 LT Separations

Analysis and Results (part-1)

Each data set at fixed Q² and W² has been fitted with form:

$$\sigma_r = P_0 \cdot \left[1 + P_1 (\varepsilon - 0.5) + P_2 (\varepsilon - 0.5)^2 \right]$$

In the absence of TPE, $\underline{P_0} = \underline{\sigma_T} + 0.5\underline{\sigma}$, $\underline{P_1} = \underline{\sigma_L}$, and $\underline{P_2} = \underline{0}$

TPE corrections can modify P_0 and P_1 , and may introduce a non-zero value of P_2 , the fractional curvature relative to the P_0 , the cross section at $\epsilon = 0.5$.

While P_2 represents the fractional curvature, the size of cross section deviations from linearity will be much smaller. For P_2 =10%, the maximum deviation of the cross section from P_2 =0 would be 2.5% at ϵ =0,1. The effect are even smaller if the ϵ range of the data, $\Delta\epsilon$, is less than one.

Maximum observed deviation from Linearity

$$\Delta_{\text{max}} = \frac{\left(\sigma - \sigma_{fit}\right)_{\text{max}}}{\sigma} \approx \frac{P_2(\Delta \varepsilon)^2}{8}$$

Analysis and Results (part-2)

Region	<p<sub>2></p<sub>	P ₂ _{MAX} 95% CL	Δ _{max} 95% CL
Elastic	0.019(27)	0.064	0.8%(Δε)²
Resonance	-0.060(42)	0.086	1.1%(Δε)²
DIS	-0.012(71)	0.146	1.8%(Δε)²

This yields limits on the deviations of the data from the Rosenbluth fit of roughly 0.4% (0.7%) for the elastic (inelastic), assuming $\Delta\epsilon$ range of 0.7

$$R_{1\gamma} = \frac{\sigma_{Data} - \sigma_{fit}}{\sigma_{fit}}$$

In the absence of TPE contributions, one expects $R_{1\gamma}$ = 0 in every ϵ bin

$$R_{1\gamma} = A + B(\varepsilon - \varepsilon_0)^2$$

 $A \le 0.05 \%$

Region	В
Elastic	(0.9+/-2.0)%
Res. region	(-2.3+3/0)%
Inelastic Region	(0.9+/-3.8)%

While the limits in table provide the best quantitative limits on deviations from linearity, the residuals on the right plot give a better idea of the sensitivity of the different data sets in different regions of ϵ .

Summary

Experiment e99-118

Analysis of the experiment e99-118 is finished for Hydrogen and Deuterium Targets. R Does Not go to zero (as Q^2 goes to zero), only at very low x there is a hint that R goes to zero. Analysis indicates that possibly $R^H > R^D$. Still some work to do with radiative corrections for heavy targets.

Hydrogen & Deuterium results will be published shortly.

Experiment e00-02

Analysis of the experiment e00-02 is on the way. Calibrations, efficiency calculations are completed. Still some work to do with CSB and Rad. Corrections.

Experiment e94-110

Analysis of the experiment e94-110 is finished. Structure Functions F_1 , F_L , R are determined with a high precision in the Resonance region.

nucl-ex/0410027

Two Photon-Effects

We do not find any evidence for TPE effects. The 95% confidence level upper limit on the curvature parameter P2, was found to be 6.4% (10.6%) for the elastic (inelastic) data. This limits maximum deviations from a linear fit to $\le 0.4\%$ (0.7%).

Radiative Corrections

$$oxed{\sigma_{Born} = (\sigma_{Meas} - \sigma_{El} - \sigma_{Qel}) rac{\sigma_{Born}^{Model}}{\sigma_{Inel}}}$$

Bardin: (TERAD) Only calculates Internal Radiative Corrections (Includes 2-photon Corrections)

Mo, Tsai: calculates Internal & External Radiative Corrections

$$\sigma_{Int} = \sigma_{El}^{Int} + \sigma_{Qel}^{Int} + \sigma_{Inel}^{Int}$$

$$\sigma_{Ext} = \sigma_{El}^{Ext} + \sigma_{Qel}^{Ext} + \sigma_{Inel}^{Ext}$$

$$\sigma_{Born} = \sigma_{Meas} - \sigma_{Bardin}^{Int} \left(\frac{\sigma^{Int} + \sigma^{Ext}}{\sigma^{Int}} \right)_{Mo,Tsai}$$

$$R_{e99118}^{A>2}(Q^2) = \left(\frac{A \times Q^2}{Q^4 + B}\right) + \langle C \rangle$$